
Chapter 11

Antenna Diversity

We have seen that in a multipath propagation environment, fast fading due to cancellation of multipath
signals leads to low power at the receiver and causes interruption of the communication channel. There
are a number of approaches to overcoming fading, including coding schemes, interleaving to spread single
bit errors over a long time window, and increasing the transmitter power. These approaches are more or
less indirect. Diversity is a class of techniques which address fading and increase channel communications
capacity in a more direct way.

The basic principle of diversity is to receive the same signal at multiple times, locations, or frequencies
so that if one received signal is in a fade, another is available with larger signal power. In communication
theory, it is common to refer to the different signals as channel branches. There are several types of signal
diversity:

Spatial: Multiple antennas at different locations.

Angle: Multiple antennas with different gain patterns.

Polarization: Two antennas receiving orthogonal polarizations.

Time: Transmit the same signal multiple times at an interval larger than the coherence time of the
channel.

Frequency: Transmit the same signal at multiple frequencies with spacing larger than the coherence
frequency of the channel.

This chapter will focus on antenna diversity. To analyze diversity approaches, from an electromagnetic
point of view we need to determine the degree of correlation of the received signals at multiple antennas.
The lower the correlation, the more likely one branch has a high SNR when another has low SNR, so
for diversity applications, low correlation is desirable. From a signal processing point of view we need
algorithms that exploit multiple transmissions of the same signal or bit sequence to increase the channel
availability.

11.1 Signal Correlation in a Multipath Environment

In order to analyze the performance of a given approach to antenna diversity, we need to understand the
degree of correlation between signals received by multiple antennas. The array output voltage correlation
matrix defined in Section 8.3 provides a mathematical framework for analyzing signal correlation.
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For an array with complex baseband output voltages arranged into the column vector v(t), the correla-
tion matrix is

R = E[v(t)v(t)H ] (11.1)

Since we are typically interested in the relative correlation and not on the power contained in the signals
from the array elements, it is convenient to define a normalized correlation coefficient according to

ρmn =
Rmn√
RmmRnn

=
E[vm(t)v∗n(t)]

E[|vm(t)|2]1/2E[|vn(t)|2]1/2
(11.2)

The correlation coefficient satisfies 0 ≤ |ρmn| ≤ 1. If vm(t) = vn(t) then the signals are fully correlated
and ρmn = 1. If the signals are proportional, they are also fully correlated. If vm(t) = αvn(t), where α
is an arbitrary complex constant, then ρmn = α/|α| and |ρmn| = 1. As a matrix, ρ is similar to the array
correlation matrix R but has diagonal elements equal to unity. For a given pair of elements, it is common to
drop the subscripts and refer to the correlation coefficient simply as ρ.

If two array output signals are highly correlated (ρ → 1), then the signals do not contain much more
information than the signal from one antenna, and regardless of the signal processing scheme used with
the multiantenna system, the achievable diversity gain is small. If the correlation is low (ρ → 0), then if
one branch is in a fade, it is likely that the other signal is strong and has a high enough SNR for reliable
detection. The goal now is to analyze the correlation coefficient for various types of diversity.

11.2 Spatial Diversity

Spatial diversity is the use of an array of identical elements with different locations to overcome fades and
improve channel capacity. For spatial diversity to be useful, we need the signals from multiple antennas to
be uncorrelated, so that if the local power drops at one antenna due to fading the power remains large at
another. Since the correlation coefficient depends on the angles of arrival of the multipaths as well as the
array configuration, we will consider several specific angle of arrival distributions.

11.2.1 Uniform Spherical Arrival Angle Distribution

From (8.25), the array open circuit voltage correlation matrix for a single incident plane wave with power
density Ssig is

Rsig,oc = c2S
sigEp(r)E

H
p (r) (11.3)

In a multipath environment, the signal correlation matrix can be obtained by integrating (11.3) over the
probability distribution function of the incoming multipaths. This leads to

Rsig,oc = c2

∫
SsigEp(r)E

H
p (r)p(Esig, p̂,Ω) dEsig dp̂ dΩ (11.4)

where p(Einc, p̂,Ω) is the joint PDF of the incoming waves as a function of amplitude, polarization, and
angle of arrival.

If the PDF is uniform with respect to polarization and angle of arrival, then the integral in (11.4) becomes
identical to the integral in the external thermal noise correlation matrix (8.26) for a uniform brightness tem-
perature distribution. It follows that Rsig,oc is proportional to the correlation matrix of an isotropic external
thermal noise distribution, which is in turn proportional to the array element pattern overlap matrix A. If
the array is lossless, we arrive at the remarkable result that the signal correlation matrix in a propagation
environment for which all polarizations and angles of arrival are equally likely, the isotropic thermal noise
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correlation matrix, the element pattern overlap matrix, and the array mutual resistance matrix are all identical
up to a scale factor!

From (7.24), the correlation coefficient for two isotropic antennas separated by a distance d is

ρ12 =
sin(kd)

kd
(11.5)

This result implies that for uniformly distributed arrival angles, to obtain low correlation between the re-
ceived signals at two antennas, the spacing should be an integer multiple of λ/2, or the spacing should be
large enough that ρ12 is small due to the denominator of (11.5).

11.2.2 Horizontal Arrival Angle Distribution

In terrestrial communications systems, antenna height above ground is relatively small, and the distribution
of incoming waves at a receiver can be approximated as consisting only of horizontal arrival angles. The
correlation coefficient for two isotropic or omnidirectional antennas separated by a distance d in a uniformly
distributed horizontal multipath environment is

ρ12 =
1

2π

∫ 2π

0
ejkd cosφ dφ

= J0(kd) (11.6)

In this case, the smallest spacing which leads to zero correlation is at kd ' 2.4 or d ' 0.38λ. This spacing
is often considered to be optimal for spatial antenna diversity.

11.3 Angle Diversity

If two antennas are oriented so that the main beams are in different directions, in a multipath environment
they will tend to receive uncorrelated signals. A step function pattern is unrealizable, but can be used
to estimate the degree of correlation in terms of the pattern overlap. If we consider two antennas with
step function azimuthal radiation patterns of width θ0 that overlap by an angle θr, the signal correlation
coefficient with a horizontal arrival angle distribution is

ρ12 =
1

θ0

∫ θr

0
dφ

=
θr
θ0

If there is no overlap, ρ12 = 0, which is optimal for angle diversity. If there is complete overlap, ρ12 = 1,
and there is no benefit in having a second antenna other than possibly an increase in gain. Because high
directivity is difficult to obtain with a small antenna, angle diversity is typically not used for a compact
system.

11.4 Polarization Diversity

Signals arriving at a receiver in orthogonal polarizations often have low correlation, due to the polariza-
tion dependence of scattering in the propagation environment. If we assume that the two polarizations
are completely uncorrelated, we can determine the correlation coefficient as a function of the polarization
discrimination of two antennas.
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Suppose that two elements have radiation patterns with polarizations given by

E1 = βθ̂ + φ̂

E2 = θ̂

The signal correlation matrix is

Rsig,oc ∼ E[EpE
H
p ]

= E

[[
p̂ · E1 p̂ · E2

] [p̂ · E∗1
p̂ · E∗2

]]
= E

[
|βpθ + pφ|2 (βpθ + pφ)pθ
pθ(βpθ + pφ) |pθ|2

]
If we assume that the two polarizations pθ and pφ are uncorrelated, then

Rsig,oc ∼
[
β + 1 β
β 1

]
(11.7)

from which it can be seen that the correlation coefficient is

ρ12 =
β√
β + 1

(11.8)

If the polarization discrimination is perfect, β = 0 and ρ12 = 0. If β is large, then ρ12 → 1, and polarization
diversity is not possible.

11.5 Processing Diversity Signals

If some type of diversity is used to obtain M partially correlated outputs or branches, we need a method to
combine the signals to make use of diversity to increase the communication channel performance. We will
see that there is a fundamental tradeoff between system performance and complexity.

11.5.1 Selection Diversity

A conceptually simple approach to diversity is to design the receiver to select the branch with the highest
SNR. In practice, we may not know the SNR in each branch, so we can choose the branch with the largest to-
tal power (signal plus noise). We will analyze the performance improvement of this approach for a Rayleigh
channel. For the one branch, the probability that the local SNR is less than a given value is given by the
CDF

F (γ0) = 1− e−γ0/Γ (11.9)

The probability that all M branches have SNR less than γ0 is

FM (γ0) = P (γ1 ≤ γ0, γ2 ≤ γ0, . . . , γM ≤ γ0) = (1− e−γ0/Γ)M (11.10)

where we assume that the branches are completely uncorrelated (ρmn = 0, m 6= n).
Suppose that the SNR must be greater than Γ/10 to receive a given signal. For one branch,

F1(Γ/10) = 1− e−1/10 ' 0.1 (11.11)
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so that the local SNR will be too small 10% of the time. With M = 2,

F4(Γ/10) = (1− e−1/10)2 ' 0.0091 (11.12)

so that the SNR is too small only 1% of the time. This is a significant improvement over a single branch. If
the branch signals are correlated, the diversity gain will not be as great, since if one branch fades, it is more
likely that other branches also fade.

We can determine the mean SNR for selection diversity in a Rayleigh channel. The PDF is

fM (γ) =
d

dγ
FM (γ)

=
M

Γ
(1− e−γ/Γ)M−1e−γ/Γ (11.13)

The average SNR is

ΓM =

∫ ∞
0

γfM (γ) dγ

=

∫ ∞
0

M

Γ
(1− e−γ/Γ)M−1e−γ/Γ dγ

= Γ

M∑
m=1

1

m
(11.14)

This expression shows that the incremental improvement for additional branches decreases as more branches
are added.

11.5.2 Maximum Ratio Combining

A more sophisticated approach to diversity is to use information in more than one branch, rather than only
the branch with the largest SNR. To accomplish this, all M signals must be cophased or time shifted to
account for differences in the path delays. Once this has been done, the signals can be summed using
weights w∗n. The signal envelope at the output is

rout =
M∑
1

w∗mrm (11.15)

The noise power is
Pn,out = Pn

∑
m

|wm|2 (11.16)

where we have assumed equal noise power Pn in each branch. The SNR is

γout =
Ps,out

Pn,out

=
|
∑
w∗mrm|2

Pn
∑
|wm|2

=
1

Pn

wHr rHw

wHw
(11.17)

From (7.38), the SNR is maximized if
w = r (11.18)
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which means that for maximum SNR we weight each branch by the signal amplitude. The output SNR for
these weights is

γout,max =
rHr

Pn

=

M∑
m=1

γm

For a Rayleigh channel, the output SNR is the sum of M squared Gaussian random variables, which has
a Chi-squared PDF:

f(γ) =
γM−1e−γ/Γ

ΓM (M − 1)!
, (γ > 0) (11.19)

The CDF is

F (γ0) = 1− e−γ0/Γ
M∑
m=1

(γ0/Γ)m−1

(m− 1)|
(11.20)

which leads to much better performance than simple selection diversity.

11.5.3 Equal Gain Combining

A compromise between selection diversity and maximum ratio combining is to set all gains to unity, so that
the output is

rout =
M∑
1

rm (11.21)

The average output SNR is

ΓM =
1

2MPn
E[|rout|2]

=
1

2MPn

∑
m,n

E[rmr
∗
n]

If we assume that the branches are uncorrelated, then

E[rmr
∗
n] = E[rm]E[r∗n] =

(√
πPs/2

)2
=
π

2
Ps, (m 6= n) (11.22)

where we have assumed that the signals have been cophased and used the fact that the expected value of a
Rayleigh distributed random variable with parameter σ is

√
π/2σ. The signal power is Ps = E[|rn|2]/2 =

σ2. Using this result, the average SNR is found to be

ΓM =
1

2MPn

[
2MPs + (M2 −M)

πPs
2

]
=
Ps
Pn

[
1 +

(M − 1)π

4

]
= Γ

[
1 +

(M − 1)π

4

]
(11.23)

where the second term in the square brackets represents the relative SNR improvement due to diversity.
Equal gain combining provides performance that is close to that of the optimal maximum ratio combining,
but is simpler to implement and does not require adaptive weighting of the branches.

Warnick & Jensen March 29, 2021


